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EFFECT OF AFTERBODY SHAPE, NOZZLE TYPE, AND
ENGINE LATERAL SPACING ON THE INSTALLED PERFORMANCE
OF A TWIN-JET AFTERBODY MODEL*

By Charles E. Mercer and Bobby L. Berrier
Langley Research Center

SUMMARY -

An investigation has been conducted in the Langley 16-foot transonic tunnel and in
the Langley 4- by 4-foot supersonic pressure tunnel of the installed performance of a
generalized twin-jet afterbody-exhaust nozzle model. The model was tested statically
and at Mach numbers from 0.6 to 1.3 and 2.2. High-pressure compressed air provided
primary exhaust gases at total-pressure ratios up to 22. The effects of exhaust nozzle
design, nozzleroperation, lateral spacing on afterbody and nozzle thrust-minus-drag
performance, and the effects of afterbody geometric shaping on exhaust nozzle perfor-
mance were obtained.

The results show that an iris-convergent nozzle generally had the highest installed
performance for all afterbodies at subsonic Mach numbers, whereas no single nozzle type
exhibited consistently better performance when integrated with the different afterbodies
at supersonic speeds. However, a convergent-divergent-iris nozzle generally showed
competitive performance when compared with the other nozzles. The generalized clean
external contoured afterbody with minimum lateral engine spacing had the best perfor-
mance for nearly all test conditions. The afterbody similar to a twin-jet fighter-type
airplane having a long engine interfairing and long stabilizer actuator fairings had the
lowest performance at military (dry) and partial afterburning power settings but was com-
petitive with other afterbodies at maximum afterburning power setting. Increasing engine
lateral spacing along with maximum cross-sectional area generally increases afterbody
drag, slightly increases thrust minus nozzle drag, and decreases thrust minus afterbody
and nozzle drag.

INTRODUCTION

" Recent research with powered models of aircraft having twin engines mounted in
the aft end of the fuselage has shown performance losses associated with this type of

*Title, Unclassified.
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installation. (See refs. 1 to 3.) Such losses appear because of increased afterbody drag
due to unfavorable jet effects, increased nozzle drag due to unfavorable afterbody flow
field, or nozzle internal losses due to unfavorable afterbody flow field (especially blow-
in-door and plug nozzles). As shown in reference 4 for a fixed afterbody design having
an unfavorable flow field, changes in nozzle geometry resulted in small variations in
thrust-minus-drag performance; whereas reference 5 shows that airframe geometry
alterations resulted in large gains in gross thrust-minus-drag performance. It is obvious
that early in the design stages of a twin-engine fighter aircraft, a thorough study should
be made of the complete airplane configuration including the powerplant installation with
emphasis on nozzle design, proper installation, and accurate performance estimates.
Since nozzle-airframe interaction is generally too complex for theoretical analysis,
experimental work must be done to determine interference forces and absolute perfor-
mance levels. '

The purpose of the present paper is to present the results of an investigation of the
performance of five related generalized twin-jet airplane afterbodies in combination with
four types of engine exhaust nozzles installed on the Langley two-balance air-powered
model. Objectives of the investigation were to determine the effects of exhaust nozzle
design, nozzle operation, and lateral spacing on the thrust minus afterbody and nozzle
drag performance, and the effects of afterbody shape on exhaust-nozzle performance.

These investigations were conducted in the Langley 16-foot transonic tunnel and the
Langley 4- by 4-foot supersonic pressure tunnel at static conditions and at Mach numbers
of 0.6 to 1.3 and 2.2. The jet total-pressure ratio was varied from 1 (jet-off) to about 22
depending on the Mach number. The engine primary flow was simulated with compressed
air and the nozzle secondary mass flow was zero during the entire investigation.

SYMBOLS
A cross-sectional area, meters?
Ae nozzle exit area, meters2
Aeng engine maximum cross-sectional area at upstream end of nozzle, meters?
Amax maximum cross-sectional area of afterbody, meters2
Ag exit area of plug nozzlé shroud, meters?2
Ageal cross-sectional area enclosed by seal at seal station, meters?
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nozzle throat area (one engine), meters?
total nozzle throat area (two engines), meters?

F
axial-force coefficient on afterbody including base annuli, . %

QoA max

drag coefficient obtained from integration of pressures on faired end caps
N=41

replacing nozzles, Z - Cp K_A—
N= max

skin-friction axial-force coefficient

local pressure coefficient, &—:—pﬁ

diameter of nozzle exit, meters

diameter of engine at engine maximum cross section, meters
diameter of shroud exit (plug nozzle), meters

diameter of nozzle throat, meters

axial force (drag) on afterbody including base annuli, newtons
axial force on nozzle (external drag), newtons

total axial force of afterbody plus nozzles (external drag), newtons
afterbody axial-force balance reading, newtons

thrust minus axial-force balance reading, newtons

ideal primary thrust for complete isentropic expansion of primary mass flow,

f

ro

- Y poo L4
m\2R —— Tt j 1-{— . newtons
718\

internal nozzle gross thrust, newtons
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Fj - F A,n gross thrust minus external axial force of nozzles, newtons
F]- -F At . gross thrust minus axial force of afterbody-nozzle combination, newtons
h body height at maximum cross section, meters

l model length, meters

In exposed length of nozzle, meters

i3 length of model to end of afterbody, meters

M free-stream Mach number

m measured mass-flow rate

N integer

pe, s local static pressure at external surface of seal, newtons/meter2
pi,s loc?al static pressure at internal surface, newtons/ meter2

1 local static pressure, newtons/meter2

pt,j jet total pressure, newtons/meter2

P free-stream static pressure, newtons/meter2

9. free-stream dynamic pressure, newtons/meter2

R gas constant, newton-meters/kilogram-degree Kelvin

r radius, meters

[}

spacing distance between engine center lines, meters
8 /deng lateral spacing ratio based on engine diameter

Tt,j jet stagnation temperature, degrees Kelvin
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w body width at maximum cross section, meters

X, longitudinal distance frorp model nose (station 0), positive rearward, meters
x longitudinal distance from model station 129.73, positive rearward, meters
z vertical distance from horizontal reference plane, positive upward, meters
¢] boattail angle, degrees

0% ratio of specific heats

¢ radial angle of pressure orifice rows on end caps, degrees

A bar over a symbol indicates an average value.
APPARATUS AND METHODS

Wind Tunnels

. The investigation was conducted in the Langley 16-foot transonic tunnel and the
Langley 4- by 4-foot supersonic pressure tunnel. The Langley 16-foot transonic tunnel
is an atmospheric wind tunnel with a slotted octagonal test section having a continuously
variable speed range from a Mach number of 0.20 to 1.30. The Langley 4- by 4-foot
supersonic pressure tunnel is a single-return, continuous wind tunnel with a stagnation
pressure range of 2.758 X 104 N/m2 to 2.0684 x 105 N/m2 and a stagnation temperature

range of 316.7° K to 322.20 K. By use of interchangeable nozzle blocks, the Mach num-
ber can be varied from 1.25 to 2.60.

Model

The basic test rig for this investigation was a twin-jet, two-balance air-nacelle
model shown in the photograph (fig. 1) mounted in the test section of the Langley 16-foot
transonic wind tunnel. The twin-jet model with the exhaust nozzles replaced with stream-

lined fairings (end caps) is shown in the photographs of figure 2 with two different
afterbodies.

A sketch of the twin-jet, two-balance model is presented in figure 3(a) and impor-
tant geometric parameters are given in figure 3(b). The metric afterbody starts at the
model parting line which is located at model seal station 83.502. A flexible teflon strip
inserted into slots machined into the metric and nonmetric portions of the model was
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used as a seal. (See fig. 3(c).) In this investigation, a two-balance arrangement was
used as shown in figure 3(c): one balance measured the gross thrust and external drag
forces and the other balance measured only the external drag forces of the afterbody.

The engine primary flow was simulated with a high-pressure compressed-air sys-
tem similar to that described in reference 6. Nozzle secondary mass flow was zero for
all cases, the nozzle internal geometry being designed accordingly.

The available literature on the effect of jet exhaust interference has indicated that
the jet plume shape has the primary effect on nozzle external boattail drag. The initial
plume shape is primarily determined by jet static-pressure ratio, ratio of specific heats
of the exhaust fluid, nozzle internal-divergence angle, and external Mach number. (See
ref. 7.) Reference 7 indicates that for the range of pressure ratio of the present inves-
tigation, the difference in specific-heat ratio between air (y = 1.4) and engine exhaust
(¥ = 1.3) would result in a very small difference in initial inclination angle of the jet
boundary. Reference 8 emphasizes the possible importance of jet temperature and
specific-heat ratio simulation when significant interference between the jet plume and
airplane structure downstream of the nozzle exit exists. Since the afterbody configura-
tions of this investigation had little structure downstream of the nozzle exits and the
nozzles generally were not operating greatly underexpanded, it is believed that the rela-
tive interference levels of various configurations are valid. Any differences in inter-
ference effects due to improper jet simulation are probably small and unpublished data
tends to substantiate this belief.

Since a large number of afterbody— exhaust-nozzle combinations were investigated,
the configuration number has been coded to facilitate the comparison of different config-
urations on the data figures. The code consists of a three-number format where the first
number indicates the afterbody type, the second mimber indicates the exhaust nozzle type,
and the third number indicates the engine power setting. Photographs of the afterbodies
and exhaust nozzles are shown in figure 3(d).

Details of the five afterbody arrangements investigated are given in figure 4. The
normal cross-sectional area distributions of the five afterbodies are shown in figure 4(e).
The afterbodies which represent several types of aircraft shapes are designated as
follows:

Afterbody 1: Afterbody 1 is similar to a twin-jet fighter-type airplane which has a
long engine interfairing and long horizontal stabilizer actuator fairings

Afterbody 2: Afterbody 2 is similar to afterbody 1, but has a short blunt engine
interfairing and short stubby stabilizer actuator fairings
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Afterbodies 3 to 5: Generalized afterbodies with clean external contours and with
engine center lines spaced to represent various degrees of lateral spacing — 3 minimum,
4 intermediate, and 5 maximum.

Each of these afterbodies were integrated with four nozzles representing different
exhaust-nozzle concepts. The geometric details of these nozzles are shown in figure 5.
The basic nozzle concepts were:

Nozzle 1: Iris-convergent nozzle for which the primary leaves retract for
afterburning

Nozzle 2: Convergent-divergent, variable-flap ejector-type nozzle

Nozzle 3: Plug nozzle with a 10° half-angle basic plug; plug collapses and shroud
hinges out for afterburning

Nozzle 4: Blow-in-door ejector with iris-convergent primary.
Each of these nozzle types was investigated at power settings which are as follows:
0 Represents no power setting (A = 0.0)
1 Represents dry or military power
2 Represents partial afterburning
3 Represents maximum afterburning

In addition to the four basic nozzles, two reference blow-in-door nozzles (refer-
ence blow-in-door nozzle or nozzle 0) were investigated at power settings which repre-
sent approximately dry and maximum afterburning. (See figs. 5(f) and 5(g).) The nozzle
shroud for the plug nozzle (nozzle 3) had a variable lip angle simulated with fixed hard-
ware far each pawer setting; however, for the dry power condition, a floating flap shroud
(nozzle 6) was also used with two afterbodies.

A new exhaust nozzle type, the convergent-divergent-iris (nozzle 5) was also inves-
tigated only in the maximum afterburning power setting. (See fig. 5(e).) The nozzle con-
cept would have translating flaps which move along curved tracks at the rear of the after-
burner shell. The internal contours are convergent in the nonafterburning position with
smooth external boattail lines similar to those of nozzle 1 in the dry power setting. At
afterburning positions, the shroud translates forward and the internal shape is convergent-
divergent, the remaining external boattail area becoming small. This nozzle would prob-
ably be lighter and less complex than the typical variable-flap ejector nozzle.

The various afterbodies were also tested with streamlined fairings (nozzle 7, faired
end caps, fig. 5(h)) in place of the exhaust nozzles to represent a closed body in which an
afterbody reference drag level might be established.
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| Instrumentation

Thrust and drag forces on the metric portion of the model were obtained by means
of two strain-gage balances. (See fig. 3(a).) A small-capacity six-component strain-
gage balance is used to measure drag on the afterbody shell. (See fig. 3(c).) A large-
capacity multicomponent strain-gage balance, which carried the small- capacity balance
in tandem, is used to measure thrust of the nozzles minus total external afterbody and
nozzle drag. Static pressures on the faired end caps at the orifice locations shown in
figure 5(h) were measured by the use of electrical pressure transducers. External and
internal static pressures were also measured at several locations on the periphery of
the afterbody at the model station which separates the metric section from the nonmetric
section (seal station). The jet total pressure and stagnation temperature were measured
in both tailpipes at locations shown in figure 3(c). An electronic turbine flowmeter was
used to obtain the mass-flow rate through the primary nozzles.

Data Reduction

Model and tunnel data were recorded by an automatic magnetic tape-recording sys-
tem in the Langley 16-foot transonic tunnel and by a servo-punch card system in the
Langley 4- by 4-foot supersonic pressure tunnel. These data were reduced to standard
force and pressure coefficients. Pressure forces on the faired end caps were obtained

‘by assigning each pressure orifice an incremental area projected on a plane normal to

the wodel axis and numerically integrating the incremental forces. The support system
used in this investigation has little or no interference effects (see ref. 6) and hence no
correction to the data was made for strut interference.

The gross thrust minus afterbody and nozzle axial force was obtained directly from
the thrust-minus-drag balance. (See fig. 3(c).) This term was computed as follows:

Fj- Fpt=Fpaj "'({’e,s - Peo)(Ama.x - Aseal) + (f’i,s - Puo)Aseal

The forces sensed by the balance and included in the axial-force term Fpal j are

nozzle thrust, afterbody external and internal axial forces transferred to the thrust-
minus-drag balance through the tandem drag balance, and internal and external axial
forces on the nozzles.

Afterbody axial force was obtained directly from the tandem drag balance. (See
f1g. 3(c).) 'The afterbody axial force was computed as follows:

Fa,a= Foal,a - (‘.’e,s " Puo)(Amax - Aseal) - (Py,s - pco)(Asea.l - 2Aeng)

Thrust minus nozzle drag performance is obtained by combining the two balance
axial forces as follows:

Fj - FaAn = Foal,j + Foal,a + (By,g = Po)(2Aeng)
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Tests

Data were obtained at static conditions and at a Mach number range of 0.60 to 1.30
in the Langley 16-foot transonic tunnel and at a Mach number of 2.2 in the Langley 4- by
4-foot supersonic pressure tunnel. At all test conditions the model angle of attack was
00. The average Reynolds mumber per meter varied from 11.15 X 106at M=0.7 to
12.14x 108 at M=1.3 and M=2.2. Primary total-pressure ratio varied from 1.0
(jet off) to appraoximately 22.0, depending on Mach number. Nozzle secondary mass flow

was zero throughout the entire investigation,

PRESENTATION OF DATA

The results of this investigation are presented in the following figures:

Faired end-cap pressure coefficient distributions . . . . ... . ... .. ...

Faired end-cap axial-force coefficient and afterbody axial-force coefficient

variation with Mach number . . . . . . . ¢ & i v v it e e o o o o s o o o

Variation of skin-friction axial-force coefficient with Mach number

for the various afterbodies . . . . . . . . & ¢ v v 4 i i i e s e e e e e e

Variation of afterbody axial-force coefficient with primary total-pressure
ratio for several nozzles:

Afterbody 1 . . . & & & L i e e e e e e e e i e e s e e e e s e e e

Afterbody 2

Static thrust performance for various nozzles installed on various

afterbodies . . ... .. ... ....... @ e e e e e e e e e e e e e e e e

Variation of thrust minus afterbody and nozzle axial-force performance with
primary total-pressure ratios for several nozzles: '

Afterbody 1 . . . . . . . i e e e e e e e e e e e e e e e e e e e e
Afterbody 2 . . . . . e h e e e e e e e e et e e e e e e e e e s
Afterbody 3 . . . . . . . o i e e e e e e e e e e e e e e e e e e
Afterbody 4 . . . . . . . o s e e e e e e e e e e e e e e e e e e e
Afterbody 5 . . . . . . i e e e e e e e e e e e e e e e e e e e e e e

Variation of thrust minus nozzle axial-force performance with primary
total-pressure ratio for several nozzles:

Afterbody 1 . . . . . . . o i e e e e e e e e e e e e e e e e e e e e
Afterbody 2 . . . . . . . . . e e e e e e e e e e e e e e e e e e e
Afterbody 3 . . . . . . . e e e e e e e e e e e e e e e e e e e e

-----------------------------------

Afterbody 3 . . . . . L s e e e e e e e et e e e e e s e s e e e e e e e
Afterbody 4 . . . . . . . L . L e e e e e e e e e e e e s e e e e e e e
Afterbody 5 . . . . . . L e e e e e e e e e e e e e e e e e e e e
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Afterbody 4 . . . . . .. ...
Afterbody 5 . . . . ... .. ...

Propulsive and aerodynamic performance variation with primary total-
pressure ratio for the various afterbodies at M = 2.2:

Convergent nozzle (nozzle 1) . . . . .. ....................
Convergent-divergent nozzle (nozzle 2) . .. .................
Plug nozzle (nozzle3) . .. ........................ ..

Reference blow-in-door nozzle (nozzle 0) . . o e,

Typical jet pressure ratio schedule of a turbofan-engine configuration

for the Machnumberrange. . . . . . ... ............... ..

Propulsive and aerodynamic performance for various configurations
at scheduled conditions:

Military power setting (setting 1) . . . ... .............. ...
Partial afterburning power setting (setting 2) . . . ... .. e et e e
Maximum afterburning power setting (setting 3). . . . .. ... .......

Effect of power setting on the installed performance of the various nozzles

in combination with afterbodies 1and3 . . ... ... ... ... .. .. ..

Effect of power setting on the installed performance of complex geometry

afierbodies (afterbodies 1, 2, and 3) for several nozzles . . ... .. .. ..
Effect of nozzle spacing on installed performance for the various nozzles . .

Variation of installed performance of a plug nozzle having fixed or

fleating shreud tailflaps . . . . . . . ... ..

RESULTS AND DISCUSSION

Faired End-Cap Results

25
27
28
29
30
31
32
33
34
35

36
37

38

Pressure measurements on the end caps provide information on local flow fields
and possible effects on nozzle drag. Also the end caps could be used to establish refer-
ence afterbody drag with which to compare various nozzle-afterbody drag of other wind-

tunnel force models.

Pressure coefficient distributions.- Figure 6 presents some representative pres-
sure distributions on the faired end cap installed on the five twin-jet afterbodies. Pres-
sure coefficients are shown for several radial rows at stations given in figure 5(h) and

for several Mach numbers.

Pressure coefficients measured on the end caps installed on the long interfairing
afterbody (afterbody 1) are generally negative exceptat M=0.70 and M= 0.90 where
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pressure recovery produced positive pressure coefficients near the end-cap tip. Pres-
sures measured next to the engine interfairing (centerbody), ¢ =270° and ¢ = 3159,
are generally lower than pressures measured away from the interfairing; thus, end-cap
drag is increased and nozzle drag with actual nozzles installed is probably increased.

Pressure distributions obtained with the short interfairing afterbody (afterbody 2)
generally follow the same trends as those obtained with afterbody 1 (long interfairings).
However, the level of the pressure coefficient distributions at Mach numbers of 0.70
and 0.90 are higher than that shown in figure 6(a) for the long interfairing afterbody
(afterbody 1), and thus the end caps should have less drag (same result should probably
apply to nozzle drag) when installed on the short interfairing afterbody (afterbody 2).
The detrimental effect on pressure of a surface adjacent to the end cap (or nozzle) shown
for the long interfairing afterbody (afterbody 1) is also shown by the ¢ = 90° row (next
to actuator housing) pressure distribution obtained with the short interfairing afterbody
(afterbody 2). Pressure measurements on this row, located next to a stabilizer actuator
fairing are generally lower than measurements made on other rows.

Pressure distributions obtained on the end caps installed on the clean contour
afterbodies (afterbodies 3, 4, and 5) follow the same trends as the pressure distributions
obtained with the two complex afterbodies (afterbodies 1 and 2) on orifice rows which
were not affected by surfaces adjacent to the end cap. The pressure distribution levels
obtained with the clean contour afterbodies are generally higher at M = 0.70 and
M = 0.90 than those obtained with the short interfairing afterbody (afterbody 2); thus,
end-cap drag is iower and it might be expected that installed nozzle drag also would be
lower. The differences in pressure coefficient distributions for different orifice rows
are greatly reduced at a Mach number of 2.2 when compared with the differences shown

at M2 1.2, In addition, the general pressure coefficient distribution levels are similar
for all configurations at M = 2.2,

End-cap axial force.- The pressures measured on the end cap at locations shown
in figure 5(h) were integrated over the end-cap projected area to obtain the end-cap axial
force (drag). (See fig. 7.) Afterbody axial force (drag) measured by the tandem drag
balance with end caps installed is also shown in figure 7. As was indicated by end-cap
pressures, the clean contour afterbodies (afterbodies 3, 4, and 5) had lower end-cap drag
than the complex afterbody configurations (afterbodies 1 and 2) at all Mach numbers. The
end-cap drag obtained with the short interfairing afterbody (afterbody 2) was substantially
lower than the end-cap drag obtained with the long interfairing afterbody (afterbody 1).
Engine lateral spacing (fig. 7(b)) had little effect on end-cap drag except at low supersonic
Mach numbers where the lowest end-cap drag was obtained with the wide spaced afterbody
(afterbody 5). Perhaps the most significant result shown in figure 7 is the beneficial
thrust forces (— C A, c) obtained on the end caps for the clean contour afterbodies

- e e 11



(afterbodies 3, 4, and 5) and, although to a lesser degree, for the short interfairing after-
body (afterbody 2) at subsonic Mach numbers. This result suggests the possibility of
obtaining beneficial thrust forces in the subsonic-speed regime on nozzle boattails, rather
than detrimental drag forces, when a properly integrated afterbody-nozzle installation is
achieved.

The short interfairing afterbody (afterbody 2) had the highest afterbody axial force
(drag) of the complex afterbodies (afterbodies 1 and 2). It is interesting to note, that
although the long interfairing afterbody (afterbody 1), for M < 1.3, had the lowest after-
body axial force (drag) of the configurations shown in figure 7(a), the highest end-cap
drag was also obtained with this afterbody (long interfairings). The higher drag is prob-
ably a result of the low slopes on the afterbody; hence, most of the closure drag penalty
occurs on the end caps (or nozzles). At Mach numbers above 0.8, increasing engine
lateral spacing increases afterbody axial force (drag) as shown in figure 7(b). It should
be noted that afterbody cross-sectional area also increased with spacing.

Propulsive and Aerodynamic Performance

Basic data.- Since there were no pressure measurements on the afterbodies in this
investigation and in order that one might compare the axial force presented in this paper
with the forces obtained by pressure measurements of a similar configuration, the skin
friction over the afterbody portion would be required. A calculated skin-friction axial
force for the various afterbodies is presented in figure 8 as a variation with Mach number.
This force is obtained by using the Frankl and Voishel equation for compressible, turbu-
lent flow on a flat plate as given in reference 9.

The thrust and drag data of this investigation are presented as a function of jet
total-pressure ratio. Parameters presented are the afterbody axial-force or drag coef-
ficient, the thrust minus afterbody and nozzle axial force (thrust minus total afterbody
drag) performance, and the thrust minus nozzle axial-force (drag) performance. The sub-
sonic and transonic Mach number variation is presented for one afterbody-nozzle com-
bination and three nozzle throat sizes (power setting) per page. Therefore, the effects of
Mach number, pt’ j /pw, and power setting on the drag force and performance ratios can
be readily observed. At the supersonic Mach number, M = 2.2, the jet total-pressure-
ratio range was much greater, and thus requires separate plotting. All parameters are
given for each nozzle type (maximum afterburning only) in combination with the different
afterbodies. For the wider spacing afterbodies, very little data are presented because
the tunnel starting loads (dynamics) on the model exceed the balance load limits.

The afterbody axial-force (drag) coefficients of the various exhaust nozzle-afterbody
combinations are shown in figures 9 to 13 and 25 to 30. The static thrust performances
for the various nozzles are presented in figure 14. An average thrust value is used for
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each nozzle at each engine power setting and is represented by the single line fairing.
Given in figures 15 to 30 are the thrust minus afterbody and nozzle axial-force (drag)
performance and thrust minus nozzle axial-force (drag) performance.

The values of thrust minus nozzle drag performance exceed the ideal thrust for
some of the afterbody-nozzle configurations (figs. 21 to 25) at subsonic Mach numbers
and low pressure ratios. As mentioned previously a region of positive pressures would
be located around the nozzles for several of the afterbodies (fig. 6). However, as was
shown in figure 7(a), no such nozzle performance would be realized in combination with
afterbody 1. Although each of the other afterbodies revealed this nozzle performance
for some nozzles, only the ''clean' afterbodies (afterbodies 3 to 5) remained consistent
for more than two nozzles (for example, iris-convergent, convergent-divergent, and plug
nozzle). As the throat diameter increased, the beneficial flow effects decreased, and
only the thrust of the iris-convergent nozzle (nozzle 1) remained equal to or greater than
ideal thrust for all power settings.

Comparative performance of afterbody-nozzle configurations at scheduled pres-
sure ratios.- Although previous figures are a convenient way of presenting basic data,
analysis with respect to comparison of performance of different nozzles on an afterbody,
or a nozzle on different afterbodies, requires some form of cross plotting at selected jet
total-pressure ratios. Here, for example, bar-graph comparisons (figs. 32 to 34) are
presented at a schedule of Pt,j /p < as afunctionof M typical of a turbofan engine con-
figuration (fig. 31). Although discussion for a particular schedule of Pt /pw as a func-
tion of M would generally be true for other schedules not too greatly different, the
relative differences between configurations may vary. At subsonic Mach numbers and
for all three power settings, the iris-convergent nozzle (nozzle 1) generally had the high-
est thrust minus afterbody and nozzle drag performance and thrust minus nozzle drag
performance for any nozzle tested in combination with the five afterbody shapes (figs. 32
to 34, parts (a), (b), and (c)). At low supersonic Mach numbers and for the military
(setting 1) and partial (setting 2) afterburning power settings, the blow-in-door nozzle
(nozzle 4) gave better thrust minus afterbody plus nozzle drag performance. At low
supersonic speeds and maximum afterburning power setting (setting 3), no single nozzle
type gave the best performance when combined with any of the five afterbodies. The
convergent-divergent-iris nozzle type (nozzle 5) generally showed competitive perfor-
mance when compared with the other nozzles for the limited amount of data shown (three
afterbodies at M = 2.2 and one afterbody at low supersonic speeds, see fig. 34,
parts (d), (e), and (f)). This nozzle also offers savings in weight and complexity which
further enhances its attractiveness.

Based on this information, the nozzle type which would give the better performance
throughout the speed range would be one which was essentially an iris-convergent nozzle

"’\;",'W!;'}‘-.RA_;‘,;_- 13
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at low pressure ratios and subsonic Mach numbers and a convergent-divergent nozzle in
the afterburning case and supersonic Mach numbers (high pressure ratios), that is, one
similar to the convergent-divergent-iris concept (nozzle 5). However, it should be
pointed out that as a result of the short divergent section, expansion ratios are limited
and large divergence losses may result at high power settings. In addition, power
setting and expansion ratio are not independent and hence, at some conditions, large
overexpansion or underexpansion losses may occur (for example, low pressure ratios

at maximum power setting or high pressure ratios at dry power settings).

With few exceptions the blow-in-door ejector nozzle (nozzle 4) combined with the
varjous afterbodies generally gave the lowest afterbody axial force at all Mach numbers.
This condition is probably due to a pressure increase being fed upstream through the
boundary layer as a result of a compression occurring ahead of the shroud inlet.

As mentioned previously in the discussion about the faired end-cap pressure and
force data, the long interfairing afterbody (afterbody 1) generally had the lowest jet-off
afterbody axial force for most conditions. Figures 32 to 34 also show the same result
with the nozzles operating at a typical turbofan engine pressure ratio (afterbody 3 com-
petitive at some conditions). However, combining the afterbody with the lowest after-
body drag (afterbody 1) with the nozzle which resulted in the least detrimental effect on
afterbody drag, blow-in-door nozzle (nozzle 4), did not result in the optimum (thrust
minus afterbody plus nozzle drag) afterbody-nozzle combination that might be expected.
In fact, the long interfairing afterbody (afterbody 1) generally gave the lowest gross
thrust minus afterbody and nozzle drag performance when combined with any nozzle type
at Mach numbers up to 0.90 and power settings of military and partial afterburning. This
low performance is a result of high nozzle drag as indicated by the low thrust minus
nozzle drag performance in figures 32 to 34. (Some nozzle internal losses may also be
included in this performance for the blow-in-door ejector and plug nozzles.) At maxi-
mum afterburning power setting or at supersonic Mach numbers, the performance of the
long interfairing afterbody (afterbody 1) is generally below the performance of the closely
spaced clean-contour afterbody (afterbody 3) but generally above the performance of the
short interfairing afterbody (afterbody 2). This result again emphasizes that the total
configuration (afterbody plus nozzles) must be integrated as a unit to achieve optimum
airplane performance.

Effect of power setting.- The effect of power setting (throat and exit diameter) on
the performance of four nozzle types in combination with the long interfairing afterbody
and close-spaced, clean contour afterbody (afterbodies 1 and 3, respectively) is presented
in figure 35. As nozzle throat size is increased, the gross thrust minus total afterbody
drag performance increases as expected for most conditions because the drag becomes
a smaller percentage of the increasing ideal thrust. This same trend would be expected
for the thrust minus nozzle drag performance; however, for afterbody 3, values greater
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than 1.0 were obtained because of the pressure recovery which actually caused thrust

on the external surfaces of the nozzle at subsonic Mach numbers. This recovery was

indicated by the pressure data shown in figure 6 for the faired end caps where positive
pressure coefficients were obtained over much of the faired end cap.

As pointed out in the previous section, the iris- convergent nozzle (nozzle 1) gen-
erally was more efficient at subsonic speeds whereas no single nozzle was more efficient
for all throat sizes at the higher speeds.

The afterbody drag was decreased as nozzle throat size increased for all config-
urations. This condition could probably be theorized as interference effects caused by
a shorter nozzle boattail, a lower nozzle boattail angle, and effects of the jet exhaust
plume, all of which affect the flow field around the afterbody.

The data of a reference blow-in-door nozzle (nozzle 0) are shown in figure 35 (at
Att /Amax = 0.127) in order to provide some tie-in of a flight-type nozzle (ref, 4) with
the data of this report. The reference blow-in-door nozzle (nozzle 0) had fixed hard-
ware (blow-in-doors fixed open for speeds up to 1.3 and doors fixed closed for M = 2.2;
also the nozzle shroud exit diameter was fixed at an intermediate position of divergence
for all speeds). Comparison of the reference nozzle (nozzle 0) with the floating blow-in-
door nozzle (nozzle 4) shows that the reference nozzle had from 2 to 5 percent lower
performance at speeds up to M = 1.3. Shown in figure 34(f) is the performance at
M = 2.2 for the reference nozzle (nozzle 0) having the blow-in-doors fixed closed. This
figure reveals that the free-floating blow-in-door nozzle (nozzle 4) had a lower perfor-
mance than the fixed closed reference blow-in-door nozzle (nozzle 0) by about 1 percent
in thrust minus afterbody and nozzle drag performance and about 3 percent in thrust
minus nozzle drag performance. This loss is regarded as being due to faulty stops
which allowed the shroud tail flaps to open more than desired at this speed and thus
created nozzle overexpansion losses.

The effect of power setting (throat and exit diameter) on the installed performance
of the afterbodies 1, 2, and 3 is presented in figure 36. Regardless of nozzle type, the
thrust minus total afterbody drag performance and thrust minus nozzle drag performance
of the closely spaced clean-contour afterbody (nozzle 3) were the highest; however, as the
nozzle throat size is increased, the performances of the three afterbodies approach a
common value. The apparent reason for this effect is that the external drag force is a
smaller percentage of the total measurement, especially when the afterbody and nozzle
drag is decreasing as the engine size increases. The long interfairing afterbody (after-
body 1) had the lowest performance at military and partial afterburning power settings,
but at the maximum nozzle power setting (nozzle throat at maximum afterburning), its
performance approached or exceeded the other afterbodies for most nozzles.
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The afterbody axial force for the short interfairing afterbody (afterbody 2) was
always the highest of the three afterbodies. This result is probably due to lower pres-
sures on the afterbody portion of the model which would be expected as a result of the
steeper slopes indicated by the area distributions shown in figure 4(e).

Effect of engine lateral spacing.- The effect of engine lateral spacing on gross
thrust minus nozzle axial force, gross thrust minus afterbody and nozzle axial force, and
afterbody axial force is shown in figure 37 for four nozzle types at selected Mach num-
bers and typical jet total-pressure ratios. With exception of M = 1.3, increasing engine
lateral spacing generally increased gross thrust minus nozzle axial force for all four
nozzle types as a result of decreased mutual jet interference and nozzle drag. At
M = 1.3, gross thrust minus nozzle axial force decreased for the military power nozzle
setting and generally increased for the maximum afterburning power nozzle setting with
increasing engine lateral spacing. Mixed results were obtained at the partial after-
burning power nozzle setting at M = 1.3.

Afterbody axial force (drag) increased substantially with increasing engine lateral
Spacing for all nozzle types. Since nozzle area or base area is constant for all after-
bodies, the resultant afterbody closure area increases with increasing engine lateral
spacing (increasing maximum cross-sectional area) and thus is the probable cause of
the increase in afterbody axial force. This result is probably not valid if closure area
does not increase (for example, two nacelles connected by a flat plate or a close approx-
imation of such).

Increased engine lateral spacing substantially decreases gross thrust minus after-
body and nozzle axial force for all nozzle types and power settings, particularly at
M=0.9 and M= 1.3, as a result of increasing afterbody axial force (drag).

Plug nozzle performance with fixed end floating shroud flaps.- A comparison of the
installed performance of plug nozzles having a shroud with fixed (nozzle 3) and floating
(nozzle 6) tail flaps is presented in figure 38. The data show that the fixed-shroud plug
nozzle (nozzle 3) had thrust minus nozzle drag performance which was generally 1 to
2 percent greater than the aerodynamically controlled floating flap shroud plug nozzle
(nozzle 6). By comparing the data taken at static conditions (figs. 14(c) and 14(f)), the
same difference in performance is noted. This condition indicates that the loss in nozzle
efficiency is probably due to leakage through the flap linkage although no data are avail-
able to confirm this assumption.

CONCLUDING REMARKS

An investigation of the installed performance of a generalized twin-jet afterbody-
exhaust nozzle model has been conducted in the Langley 16-foot transonic tunnel and the
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Langley 4- by 4-foot supersonic pressure tunnel statically and at Mach numbers of 0.6

to 1.3 and 2.2. The effects of exhaust-nozzle design, nozzle operation, and lateral
spacing on the gross thrust minus afterbody plus nozzle drag performance and the effects
of afterbody geometric shaping on exhaust-nozzle performance are presented. An iris-
convergent nozzle generally had the highest thrust minus total afterbody drag perfor-
mance and thrust minus nozzle drag performance for all afterbodies at subsonic Mach
numbers; whereas no single nozzle type gave the highest performance when integrated
with the different afterbodies at supersonic speeds. However, a convergent-divergent-
iris nozzle concept generally showed competitive performance when compared with other
nozzles. An afterbody with the generalized clean external contours and with the engine
center lines arranged to represent minimum amount of lateral spacing had the highest
installed performance for nearly all test conditions. An afterbody similar to a twin-
jet-fighter-type airplane with long engine interfairing and stabilizer actuator fairings
extending downstream of the nozzles had the lowest performance at the lower power
settings but was competitive at maximum afterburning power settings. Increasing engine
lateral spacing along with maximum cross-sectional area (increasing closure area) gen-
erally increases afterbody drag force, slightly increases thrust minus nozzle drag force
(decreases nozzle drag), and decreases thrust minus afterbody plus nozzle drag force.

Pressure instrumented faired end caps were tested on each afterbody to provide
local flow-field information which would affect installed nozzle performance. Surfaces
adjacent to the faired end caps (such as extended tail actuator fairings) generally
decreases the end-cap pressure and thus increases the drag. As the adjacent surface
area increases, the end-cap drag also increases. Study of the end-cap pressures infers
that by proper tailoring of both afterbody and nozzle contours, beneficial thrust terms
can be obtained on the nozzles at subsonic speeds. Afterbodies designed to reduce after-
body drag by providing low closure slopes on the afterbody may result in substantially
increasing the end-cap drag at subsonic speeds. Although the drag of this type of after-
body may result in the lowest afterbody drag, it may not result in the optimum afterbody-
nozzle combination. Thus, separately designed optimum afterbodies and optimum nozzles
may not result in the optimum (lowest total drag) afterbody nozzle when combined and
emphasizes the need for tests which include powered nozzles in an actual airplane flow
field to determine the optimum configuration.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 28, 1969,
126-63-11-22-23.
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fa) Afterbody 2. L-68-412%

i Afterbody 3. L-68-3761

Figure 2.- Photographs of iwo atterbodies with faired end caps mounted in the Langley 16-Toot transonic tunnel.
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129,73
}
A [ eng
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Fuseloge type

Parameter
| 2 3 4 5

ArmgxCme 320.92 | 320.92 | 32092 | 326.73 | 417.06
Amax/2Agng 2.05 2.05 2.05 2.09 2.66
w/h 2.00 2.00 2.00 2.24 2.80
s/deng 1.29 1.29 1.29 1.57 2.90
Af: <r/AI'I'ICD(

Dry A ny A1 Y 09

Partial .19 .19 19 19 A5

Max .26 .26 .26 .26 .20

22

{b) Geometric parameters.

Figure 3.- Continued.
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{a) Afterbody 1.

Figure 4.- Sketches of various afterbodies. All dimensions are in centimeters uniess otherwise indicated.
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Figure 5.- Conciuded.
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. Figure 6.- Typical pressure distributions on the faired end caps with the various afterbodies for several Mach numbers.
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Figure 6.- Continued.
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Figure 7.- Variation of afterbody and end-cap drag coefficient with Mach number for the various afterbodies. Nozzles replaced
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{a) tris-convergent nozzles.

Figure 9.- Variation of afterbody axial-force coefficient with primary total-pressure ratio for afterbody 1.
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(b) Convergent-divergent nozzles.

Figure 9.- Continued.
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{c) Plug nozzies.

Figure 9.- Continued,
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(d) Blow-in-door nozzles.

Figure 9.- Continued.
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{e) Reference blow-in-door nozzles.

Figure 9.- Concluded.
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{a) Iris-convergent nazzles.

Figure 10.- Variation of afterbody axial-force coefficient with primary total-pressure ratio for afterbody 2.
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{b} Convergent-divergent nazzles.

Figure 10.- Continued.
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{c) Plug nozzles.

figure 10.- Continued.
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(d Blow-in-door nazzles.

Figure 10.- Continued.
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(e) Plug nozzles with floating tail flaps.

Figure 10.- Concluded,
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Figure 11.- Variation of afterbody axial-force coefficien! with primary total-pressure ratio for afterbody 3.
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Figure 11.- Continued.
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{c) Plug nozzles.

Figure 11.- Continued.
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Figure 11.- Continued.
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{e) Plug nozzles with floating tail flaps.

figure 11.- Continued.
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(2 Iris-convergenf nozzles.

Figure 12.- Variation of afterbody axiai-force coefficient with primary total-pressure ratio for afterbody 4.
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(b} Convergent-divergent nozzles.

Figure 12.- Continued.

CA e e

63



64

Configuration 431

Configuration 432

Configuration 433

5 -] 7

1 2 3 4
p'r i/p(n

{0 Plug nozzles.

Figure 12.- Continued.
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(d) Blow-in-door nozzles.

Figure 12.- Continued.
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Figure 13.- Variation of afterbody axial-force coefficient with primary total-pressure ratio for afterbody 5.
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Figure 13.- Continued.
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{c) Plug nozzles with fixed tail flaps.

Figure 15.- Continued.
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O ONF NG 4L

91



Fi=Fa,t

$ s e e
9 EEEEEE = s
: r:;:ﬁ - LEam RN R it "
s IEnT Bt :
.8 "'.':q'té HEE r BET SRy I 3
= 3 iR
i i £ :
Ent : S ; it &
f ; TosimiInien $ ;‘,;ﬁ B 3 22
 FEag i .—"r £ T e 28t HE
.6 Eeas T ina i

-——_— - - — . e a4 - -

Configuration 30!

M
O 0.70

1.0 e : o .eo

O .90

T
3t
[

ﬁ:u;g:
*:ﬂj..h

il

i
B
it
i

92

: EE
3 S :

-5 - e e - 3 ¥ =

o T S

o= St o] St

: > : i

4 EEEEs = T e B SIS
s : S : it

E:Ei:g:.: i

"E 'l!:"'n'!Fg Y i

£
i : R
:E#E. et Tee . “: # &
$SH3 I s 12 3
';F i 32 12 o
= % ¥ ::Y#: ;:} ¥

:

5 s

i i 3
H 1

122

= I m" - + 1X

N
W
H
w

pr,j/Poo

(f) Reference blow-in-door nozzles.

Figure 17.- Concluded.

L RIS NI IS N




93

‘p Apogaayje Joj Ofjes 3Inssaid-jejo} AJewyid YyM 3UeWI0NIAd 9240)-[eixe ADOQIa}IR |€J0} SPULIW JSNUL ssob Jo uopejsepn -'g1 a.nbiy

*$aj220u JU3bI3AUCD-SLI| (R)

@/

e’ _
€ K
o) v "
0egl ¥ t
om. * 4 -
0,53 sy V4~ m.u_ M
0L0

aﬁﬂﬁ_ i .___ﬁ ___zﬁ

€1y uoyoinbiyuod 1y 101 0.nB1§u0D

2ip uoyounbiyuod




€2t uonoanbyjuo)

‘panupuo) -g1 unbyy

*s9jzzou Judbianp-jusbiaauo) (q)

@9/ (g

T

22t uoljoinbyuo)

12y uoH0INbIU0D

94



‘panupuo) -g anbyy

‘sdej) 11€} Pax)) yym sa)zzou bnid ()

€ev uoyounbyuo) 2et uoyoinbiyuon

ICH uoloinbyuo)

95

LY

-

-t dlt



PANUUOY -°gT 34nbyy

"$31220U 100p-Uy-MO)g (p)

2t uoyounbiyuo)

\J

o/

PG mos

inij

~

96



.~

¢

Configuration 453

M
O 070

bt IR O .80
O .90 4
== e 3
‘: .20 3
i : HHN
1.0
i
9 :
E - )
B i S
B B s
EER
.7 :EE : =% et
S 35553 i3
S + 3 # :
= e |
i § Jitttrtt 1
5 | s : ° H F
H 23
a4 = e : i it}
3
-2 ? £
it &t ]
S :

ro [

Pt,j/ Peo

(e) Convergent-divergent-iris nozzles.

Figure 18.- Concluded.
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Figure 21.- Continued.
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(b) Convergent-divergent nozzles.

Figure 22.- Continued.
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Figure 22.- Conciuded.
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(¢) Convergent-divergent-iris nozzles.

Figure 23.- Concluded.
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Figure 25.- Propulsive and aerodynamic performance of an iris-convergent nozzle installed on the various afterbodies. M = 2.2.
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Figure 26.- Propulsive and aerodynamic performance of 3 convergent-divergent nozzle installed on the various afterbodies. M = 2.2.
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figure 27.- Propulsive and aerodynamic performance of a plug nozzle instalied on the various afterbodies. M = 2.2
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Figure 28.- Propulsive and aerodynamic performance of a blow-in-door nozzie installed on the various afterhodies. M = 2.2,
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Figure 29.- Propulsive and aerodynamic performance of a convergent-divergent-iris nozzle instailed on the various afterbodies. M = 2.2.
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Figure 30.- Propulsive and aerodynamic performance of a reference blow-in-door nozzie installed on afterbody 1. M = 2.2,
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Figure 32.- Propulsive and aerodynamic performance for the various afterbody-nozzle combinations at military power setting.
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Figure 32.- Continued.
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Figure 34.- Propulsive and aerodynamic performance for the various afterbody-nozzie combinations at maximum afterburning power setting.
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for several Mach numbers,
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figure 38.- Installed performance of a plug nozzle having fixed or floating tail flaps for the Mach number range at scheduled
jet total-pressure ratios.
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